Department of Mathematical and Computational Sciences
 National Institute of Technology Karnataka, Surathkal

MA110 - Engineering Mathematics-1
 Problem Sheet - 6

Extreme Values and Saddle Points

1. Find all the local maxima, local minima, and saddle points of the following functions.
(a) $f(x, y)=\frac{1}{x^{2}+y^{2}-1}$
(c) $f(x, y)=y \sin x$
(b) $f(x, y)=\frac{1}{x}+x y+\frac{1}{y}$
(d) $f(x, y)=e^{2 x} \cos y$
2. Find the absolute maxima and minima of the following functions on the given domain.
(a) $f(x, y)=x^{2}+y^{2}$ on the closed triangular plate bounded by the lines $x=0, y=0, y+2 x=$ 2 in the first quadrant.
(b) $T(x, y)=x^{2}+x y+y^{2}-6 x$ on the rectangular plate $0 \leq x \leq 5,-3 \leq y \leq 3$.
3. If $f_{x}(a, b)=f_{y}(a, b)=0$, must f have a local maximum or minimum value at (a, b) ? Give reasons for your answer.
4. The temperature at a point (x, y) on a metal plate is $T(x, y)=4 x^{2}-4 x y+y^{2}$. An ant on the plate walks around the circle of radius 5 centered at the origin. What are the highest and lowest temperatures encountered by the ant.
5. Find all the critical and saddle points of the function $f(x, y)=x^{2}+x y+3 x+2 y+5$.
